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LETTER TO THE EDITOR 

The excitation spectrum of the orbitally degenerate 
Hubbard model in one dimension: absence of Cooper 
pairing 

Kong-Ju-Bock Lee and P Schlottmann 
Department of Physics, Temple University, Philadelphia, PA 19122, USA 

Received 17 October 1989 

Abstract. The degenerate Hubbard chain with N internal degrees of freedom is integrable if 
site occupations of more than two electrons are excluded. If on average there is exactly one 
electron per site, the system is a Mott-Hubbard insulator. We discuss the elemental charge 
andspinexcitations, the effectsof crystalline fields quenching the orbital degrees of freedom, 
and the implications of hole states for superconductivity. 

The discovery of ceramic high-temperature superconductors has renewed the interest 
in low-dimensional highly correlated systems. These compounds have very anisotropic 
magnetic and transport properties arising primarily from the conductivity within the 
Cu-0 planes. Three ionic configurations of Cu are believed to play an important role, 
namely 3d1°, 3d9 and 3d8, all other configurations being excluded by large Coulomb 
interactions. These configurations correspond to zero, and two holes (within the Cu 3d 
shell) per site, so as a first approximation the two-dimensional Hubbard model appears 
to be an adequate description of the Cu-0 planes (Anderson 1987, Anderson et a1 1988, 
Schrieffer et a1 1988, Kane et a1 1989). 

If the Hubbard on-site Coulomb interaction U is sufficiently large, the system will 
be a Mott-Hubbard insulator if there is exactly one electron per site. While in three 
dimensions the Mott gap opens only for U-values larger than the critical value U,, there 
is no Mott transition in one dimension (Lieb and Wu 1968), i.e. for a half-filled band 
there is a gap for all U > 0. It has so far not been established whether U, is zero or 
finite in the relevant two-dimensional case. It is, however, assumed that the Coulomb 
interaction of the Cu 3d shell is sufficiently strong for there to be a Mott-Hubbard gap 
in half-filled Cu-0 bands. It has been argued (Anderson 1987, Anderson et a1 1988) that 
due to the quantum fluctuations in low dimensions, one and two dimensions may not be 
that different, so concepts from exact solutions in one dimension can be adapted to the 
two-dimensional case. 

By means of a k-space renormalisation it has been shown (Bychkov etaf 1966, Solyom 
1980) that away from the Mott gap and for small coupling the one-dimensional Hubbard 
model is not unstable with respect to superconducting fluctuations at T = 0. However, 
a small additional retarded attractive force will drive the ground state of the system into 
a superconducting instability (Zimanyi et a1 1988). A reliable way to address the question 
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of superconductivity in the presence of a strong Coulomb repulsion and for a nearly half- 
filled band is within the framework of the exact solution by means of Bethe’s ansatz. 

In this letter we first discuss the charge and spin excitation spectrum of the degenerate 
Hubbard model. In order to preserve the integrability of the model the occupation of a 
site by more than two electrons must be forbidden. For highly correlated electron 
systems this also represents a physical condition, since ionic configurations of Cu 3d” 
with less than eight electrons should be excluded. The degeneracy arises from both spin 
and orbital degrees of freedom. The crossover from the orbitally degenerate case to the 
non-degenerate (standard) Hubbard model can be achieved by quenching the orbital 
degrees of freedom with crystalline fields. Although the quenching gives rise to quanti- 
tative changes in the charge excitation spectrum, it does not change it qualitatively, so 
we arrive at the conclusion that an additional attractive mechanism is necessary to bind 
holes into pairs. 

We consider the Hamiltonian 

N ,  N 

i = l  s = l  5,s’ 
(s ZS’) 

where N,  is the length of the chain, c i  creates an electron at the site i with a combined 
spin and orbital index s (s runs from 1 through to N = 2(21+ l)) ,  n, = tic,, and P 
projects onto the subspace of states having two or fewer electrons at each site. We denote 
by Ne the number of electrons. Note that the number of electrons with spin and orbital 
index s is conserved by the Hamiltonian (1). 

Model (1) has been independently diagonalised by means of Bethe’s ansatz by Choy 
(1980) and Haldane (1980). The procedure is a straightforward extension of Lieb and 
Wu’s (1968) solution of the non-degenerate Hubbard chain. Indeed, the two-particle 
problems are identical, but there is a difference in the three-particle solution if all three 
‘colour’ components s are different. If the three electrons are allowed to occupy the 
same site, the three-particle scattering matrix cannot be reduced to a product of two- 
particle scattering matrices and the system is not integrable (Choy and Haldane 1982). 
However, if states with site occupations of more than two electrons are excluded, the 
factorisation condition is satisfied for all Ne and numbers of components N .  On imposing 
periodic boundary conditions, the problem reduces to a set of eigenvalue equations, 
which has been solved by Sutherland (1968) for an arbitrary Young tableau by means of 
a sequence of additional ( N  - 1) nested Bethe ansatz. Each Bethe ansatz leads to a new 
eigenvalue problem with the number of ‘colour’ components reduced by one and gives 
rise to a set of rapidities. This procedure is repeated until all internal degrees of freedom 
are eliminated. As a result, Nsets of rapidities (A;”,), m = 0 , . . . , N - 1, are obtained, 
which are self-consistently determined by the Bethe ansatz equations (Choy 1980, 
Haldane 1980). The set for m = 0 corresponds to A:) = sin k , ,  where (k,) are the 
moments of the electrons, while the other sets are associated with the spin and orbital 
degrees of freedom. 

In the ground state, all the ALm) take real values. Due to the tight-binding band the 
k-values are limited to the interval [ -n, n], while the spin rapidities A@), m = 1, . . . , 
N -  1, are not constrained. All the rapidities within one set must be different. In 
the thermodynamic limit, the rapidities are closely spaced and may be regarded as a 
continuous variable. It is then usual to define a distribution density function, &)(A), 
for each set of rapidities, m = 1, . . . , N = 1, and p ( k )  for the momenta of the electrons 



Letter to the Editor 10195 

(also called charge rapidities). Minimisation of the energy yields densely and sym- 
metrically (around k = 0 and A = 0) distributed rapidities, so p ( k )  = 0 for lkl > Q 
(Q s n)  and dm)(A) = 0 for (AI > B,. The complementary ‘hole’ distribution functions 
are ph(k) and aimj(A), m = 1, , , , , N = 1, which vanish identically for Ik( < Q and 
lAl < B,, respectively. The density functions satisfy the following set of linear integral 
equations (Choy 1980, Haldane 1980) 

BI  

-BI 

ph(k) -t p ( k )  = 1/2n + COS k dA a1 (A - Sin k)dl ) (A)  

B1 
ailj(A) + &)(A) + 1 dA’ a z ( A  -A’)&(A’)  = I Q  d k  al(A -sin k ) p ( k )  

J - B l  -Q 

where m = 2 , .  . , , N - 1, &“)(A) = 0 and a,(il) = (Un/4n)/[A2 + (Un/4 )2 ] .  The inte- 
gration limits Q and B, are determined from the number of electrons with each spin and 
orbital component, ns, from 

and the energy is given by 

(6) 

We first consider the situation of one electron per site (l/N-filled band) in the absence 
of external potentials, i.e. zero spin and orbital magnetisation as well as no higher orbital 
multipole moments. Then Q = nand  B, = for all m, so all ‘hole’ distribution functions 
vanish, and the integral equations can be solved by Fourier transformation (for N = 2, 
see Lieb and Wu (1968), and for N = 4, see Choy (1980)). For arbitrary N the result is 

p ( k )  = 1/2n + cos k d w  cos(w sin k)Jo(w) 

x sinh[(N - l)Uw/4]/n sinh(NUo/4) (7)  
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a(")(A) = Iom d w  cos(wA)Jo(w) sinh[(N - m)Uw/4]/n sinh(NUo/4) (8) 

and the energy is obtained from equation (6): 

EG = -4 J - dwJl(w)Jo(w) e-alw1/4 sinh[(N - 1)Uo/4]/w sinh(NUw/4) (9) 
0 

where J ,  denotes the Bessel function. 
From the structure of the equations it follows that: (i) the superposition principle 

holds for any finite number of excitations (vanishing density in the thermodynamic 
limit), i.e. the excitations do not interfere and their energies are additive; and (ii) charge, 
spin and orbital excitations are decoupled from each other. For the non-degenerate case 
( N  = 2) the excitation spectrum has been discussed by several authors (Ovchinnikov 
1970, Takahashi 1972, Col1 I11 1974, Woynarovich 1982a, b,  1983). Su et al(1979) used 
these one-dimensional soliton-like features to explain the charge transfer in poly- 
acetylene chains, and Anderson (1987) (see also Anderson et aZl988) invoked them to 
justify the resonant valence bond excitation spectrum in two dimensions. 

An elemental charge excitation is obtained by removing one particle from the system, 
i.e. by introducing one 'hole' among the k-momenta. If the hole has momentum k,, the 
momentum density p(k )  (equation (7)) is changed by the amount Ap: 

Ap(k)  = - 6 ( k  - k , )  - cos k d o  cos[w(sin k - sink,)] 

x e-uw/4 sinh[(N - 1)Uw/4]/z sinh(NUw/4) (10) 

I 

-n loE 

where the first term is the bare hole, and the second represents the rearrangement of 
the other electrons due to the missing state. The corresponding change of energy is given 

AE(ko)  = -2 In d k  cos k p ( k )  = 2 cos k ,  + 4 

by 

dw cos(w sin ko)Jl(m) 

(11) x sinh[(N - 1)Uw/4]/w sinh(NUw/4). 

AE(ko) is symmetric in ko around ko = 0, but not necessarily monotonically decreasing 
for positive k,, as shown in figure l(a) for U = 1 and various N. For U > 1.53, AE(ko) 
decreases monotonically for all N ,  so the minimum is at ko = n. In order to prove that 
the system is a Mott-Hubbard insulator, we have to show that the chemical potentials 
p+ and p- (for adding and removing an electron) are different (Lieb and Wu 1968), i.e. 

p +  E(Na + 1) - E(N,)  # p -  E(N,) - E(Na - 1). (12) 
According to equation ( l l ) ,  p- = - min(AE(ko)), while p+ can be obtained using 
electron-hole symmetry, 

E ( N e )  = (Ne  - N,)U + E(2N, - N e )  (13) 
(we assumed that the system is an orbital and spin singlet), so p+ = U - ,up for Ne = N,, 
i.e. on average one electron per site. Since ,u+ - p- > 0, the system is an insulator. Note 
that if the band filling is other than one electron per site, p+ = p- and the system is a 
metal (see Lieb and Wu (1968) for N = 2). 

The same procedure applies if two or more holes are introduced. The energy is the 
sum of the energies of the individual holes. Hence the holes behave like independent 
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Figure 1. Elemental excitations of the degenerate Hubbard model with on average exactly 
one electron per site and U = 1. (a )  Energy required to remove one electron from the system 
for various N-values (for N = 2 see Woynarovich 1983). Note that AE(ko)  is not necessarily 
monotonic. ( b )  The spin-excitation energies for N = 6 are the same as for the SU(6) Hei- 
senberg chain. Lo -+ M corresponding to the long-wavelength limit. 

soliton-like particles, which do not interact and which propagate according to the energy 
momentum dispersion displayed in figure l(a). There are no holon bound states in the 
ground state. A similar picture arises if we consider a band filling of less than one electron 
per site, except that the dispersion relation is different (and is a function of the band 
filling). 

Next we study excitations of spin and orbital degrees of freedom by keeping the 
number of particles constant. These excitations correspond to changing the 'colour' of 
one electron in the system. The initial state is the spin and orbital singlet and the 
elemental excitations are obtained by removing A. from the set of rapidities (A'")). As a 
consequence of the Pauli principle, the missing A. modifies all the distribution functions, 
a(")@) and p ( k ) .  The rearrangement of the momenta k (charge rapidities) is given by 

A p , ( k )  = -(cos k ) ( 2 / N U )  sin(mn/N)/{cosh[(4n/NU)(Ao - sink)] 

A P m ( k ) :  

- cos(mn/N)} 

which gives rise to the excitation energies AEm(Ao) 

d k  COS k A p m ( k )  

= 4 lom d w  cos(wAo).Tl(w) sinh[(N- m)Uw/4]/w sinh(NUw/4). (15) 

These excitation energy bands are shown in figure l(b) for U = 1 and N = 6. 
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Also, these excitations are soliton-like, i.e. the excitation energy of a finite number 
of arbitrary excitations is the sum of the individual excitation energies. If the N - 1 
internal degree of freedom correspond to those of a spin S = ( N  - 1)/2, the AE,(Ao) 
are the elemental spin-wave excitations of the SU(N) Heisenberg chain. 

We now consider spin and orbital degrees of freedom in the presence of crystalline 
fields assuming no spin-orbit coupling. The crystalline fields quench the orbital angular 
momentum. For the sake of simplicity we consider only two different orbitals, i.e. N = 
4. The ionic energy levels are then split into two spin doublets (reminiscent of Kramers 
doublets), so in the absence of a magnetic field B1 = B3 = CO, but B2 is finite and 
monotonically decreasing with the crystal field splitting. We can eliminate d1) and d3) 
by Fourier transforming equations (2)-(4) and obtain two coupled integral equations 
for d2) and p :  

p h ( k )  -t p ( k )  = 1/27C - COS k dA ai2)(A){2Ucosh[n(A - sin k ) / q } - l  

+ cos k f Q  dk‘  p ( k ‘ )  \ x  (do/2n)  exp[ -io sin k - sin k ’ ) ]  
J -X  -e 

x exp( - U/w1/4) sinh(3Uw/4)/sinh(oU) 

(do/2n)  exp[i(A - A’)] d 2 ) ( A )  + li,, dA‘ ai2)(A’) 
> B 2  --oc 

X exp(lilol/4) sinh( Uo/2)/sinh(3Uw/3) 
Q 

- d k  p(k){2Ucosh[n(A - sin k ) / q } - ’ .  (17) - j-Q 
For B2 --$ CO all four levels are degenerate, the system is SU(4) invariant and we recover 
the situation discussed above. If, on the other hand, B 2 +  0, we see from equations (2) 
and (3) that p and a(’) totally decouple from d2) and d3), so we recover Lieb and Wu’s 
(1968) solution of the non-degenerate Hubbard model. The relative occupation of the 
two orbital bands is determined by J dil d 2 ) ( A )  from equations ( 5 ) .  

Consider a quarter-filled band, i.e. one electron per site (Q = n), and remove one 
charge from the system, e.g. with momentum ko. As a consequence of the missing charge 
the momenta of the remaining particles are rearranged, leading to changes Ap and A d 2 )  
in the distribution functions, Ad2)  satisfies the same integral equation as d2), namely 
equation (17) , but with the right-hand side being replaced by 

{2Ucosh[n(A - sin k 0 > / U ] } - l .  

The solution for Auk2) is then used to obtain A p ( k ) .  The integral equation satisfied by 
A p ( k )  is equation (16) with p h  = 0, p being replaced by Ap, the driving term 1 /2r  being 
substituted by -6 (k  - k,) and oi2) by AaL2). The excitation energy is then 

AE(k0)  = - 2 d k  COS k A p ( k ) .  J 
For Q = 7~ the system is a Mott-Hubbard insulator, independently of the magnitude of 
the crystal field splitting. The same holds for any other level splitting. If Q < n the 
Hubbard chain is always a metal. The energy of two or more holes is the sum of the 
individual excitation energies, i.e. the holes have a soliton-like behaviour. 
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In summary, we have analysed the elemental excitations of the degenerate Hubbard 
model. The system is a metal, except if there is exactly one electron per site which makes 
the system a Mott-Hubbard insulator. This result is independent of the level splitting, 
i.e. for arbitrary crystal and magnetic fields. The energies of the elemental excitations 
are additive, i.e. the excitations have a soliton-like behaviour. Charge excitations com- 
pletely decouple from those arising from internal degrees of freedom (spin and orbit). 

Finally, we would like to comment on possible implications of these results on 
superconductivity. Consider as a particular example one electron per site. The holes 
introduced by removing moments ki move freely throughout the crystal. They do not 
interact with each other and a quasiparticle band picture applies, although the system is 
not a Fermi liquid (Lee and Schlottmann 1989). There are no bound states of holons in 
the ground state, i.e. no Cooper pairs. However, a small retarded attractive interaction 
provided by a mechanism not included in Hubbard’s model (e.g. virtual transitions into 
another band) could lead to pairing and superconductivity at T = 0. Note that the 
formation of holons in itself overcomes the unfavourable Coulomb repulsion U among 
the electrons. 

We would like to acknowledge the support of the US-DOE under grant DE-FG02- 
ER45333. 
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